






### **REEACH Program Summary**

Aviation with low Carbon and Range Extenders for Electric High efficiency

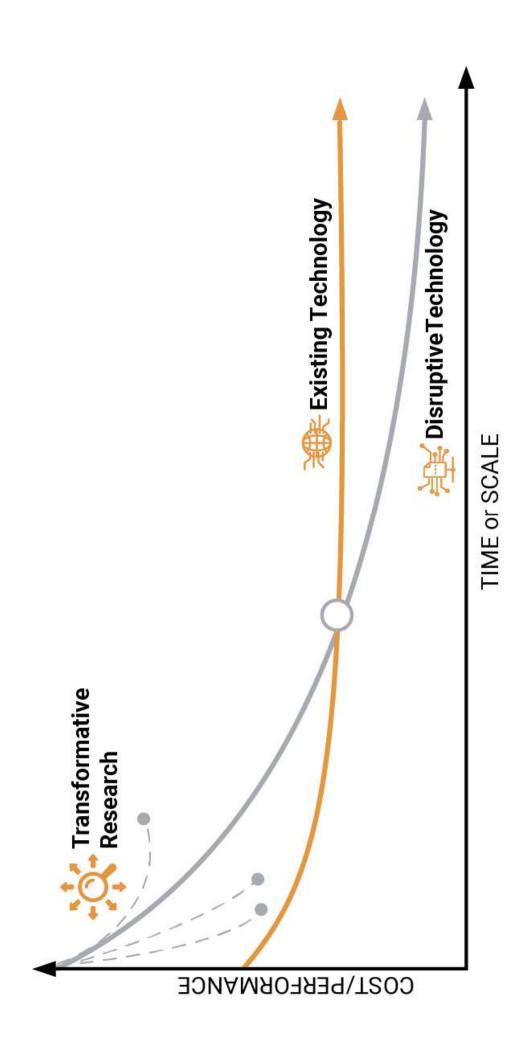
#### **ARPA-E Mission**



REDUCE

emissions










### What Problems are We Trying to Solve?





### **ARPA-E Impact Indicators 2023**

ARPA-E has provided Since 2009

**\$3.58 billion** 

more than 1,500 projects in R&D funding to

+ 42 selected projects





in private-sector follow-on funding

149 companies

ARPA-E projects



27 exits

from mergers, acquisitions, and IPOs

300 projects have partered with

for further development other government

agencies

ournal articles peer-reviewed from ARPA-E 6,797 projects

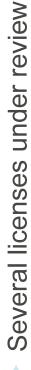


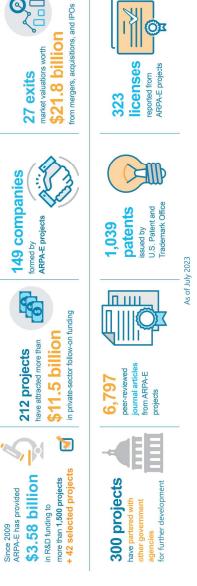
**Trademark Office** U.S. Patent and patents 1,039 issued by



licenses ARPA-E projects reported from

As of July 2023


### **REEACH Indicator additions**




- 42+ patents
- 12+ papers

A

2 startup companies







#### ARPA-F



James Seaba Viv Program Director Te



a Vivien Lecoustre tor Tech/T2M SETA



Colin Gore Tech SETA

#### Performers



Mr. Subir Roychoudhury, Precision Combustion, Inc., SOFCS for Flight

#### Performers



**Professor Christopher Cadou**, University of Maryland, *Hybrid SOFC-Turbogenerator for Aircraft* 



Dr. John Hong,

GE Aerospace Research Center, FueL CelL Embedded ENgine (FLyCLEEN)



Professor Xiao-Dong Zhou,

University of Connecticut,
High Performance Metal-Supported SOFC
System for Range Extension of
Commercial Aviation

#### $\infty$

#### Aviation

- Is/will be critical to our economy and quality of life
- Is/would be a significant contributor to fuel consumption— if we don't act
- Passenger-miles-traveled forecast to nearly double between 2016 & 2040 [1]
- Approx. 25% of flying costs is fuel
- Need lightweight economically-attractive climate-friendly propulsion options

Carbon-Neutral Liquid Fuels (CNLF): e.g., Synthetic Aviation Fuel, CH<sub>3</sub>0H, NH<sub>3</sub>,H<sub>2</sub>

High specific-energy batteries

High-efficiency chemical- to thrust- power conversion systems

1. EIA Annual Energy Outlook 2020

### Airliner Economics - Cost per Available Seat Mile

#### Cost per Available Seat Mile (CASM)

airline industry for measuring cost of ► Essential metric in operating an aircraft

Total Operating Expenses

 $\overline{Total Seat Miles Available to Passengers} = Cost per Available Seat Mile$ 

#### Primary Factors that affect CASM:

- Fuel prices: Jet A exhibits high price volatility
- Labor costs: Airlines with higher labor costs must cut other services
- Aircraft maintenance costs: Older fleets incur higher maintenance

#### Reducing CASM

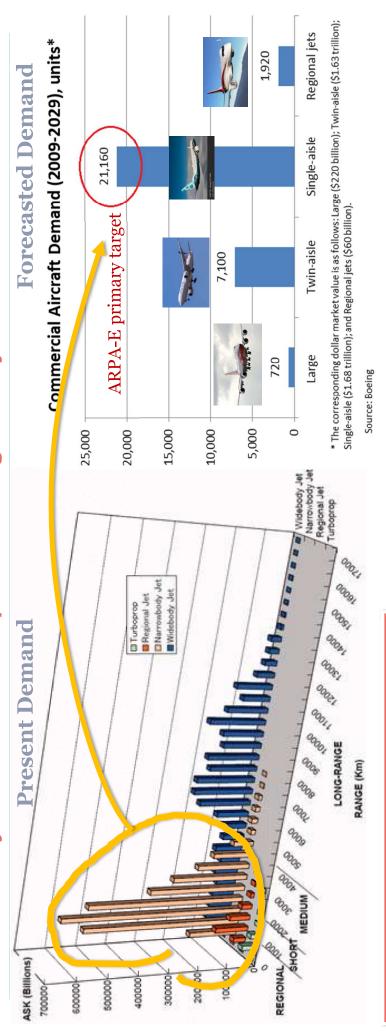
- ▶ Investment: Newer, more fuel-efficient aircraft require less maintenance and fuel
- Fuel Prices: Negotiating better fuel prices and hedging schemes
- Flight Scheduling: Optimizing schedules reduces idle time and aircraft utilization

### Airliners' Average Cost per Available Seat Mile<sup>1</sup>

(Q1 2024)

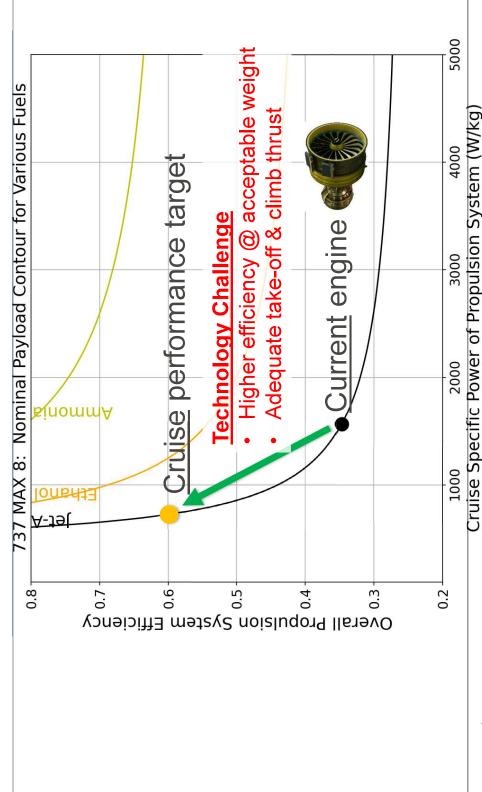


Related primarily to ownership of aircraft, ground support equipment, information technology, etc. Depreciation and Amortization 2%


Landing fees and airport (terminal / %9



Maintenance materials and repairs %9 29%

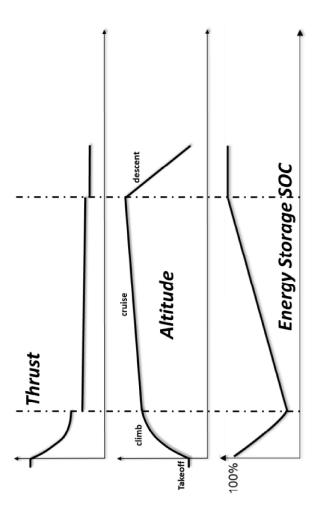



# Narrow-body Aircraft Will Keep Dominating the Sky & the Market



Asian demand will be the largest at 6,710 planes, followed by Europe (5,380), North America (5,180), and Latin America (1,800)

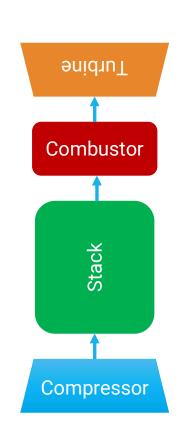
# Must Achieve High Efficiency at an Acceptable Weight




SARPAE

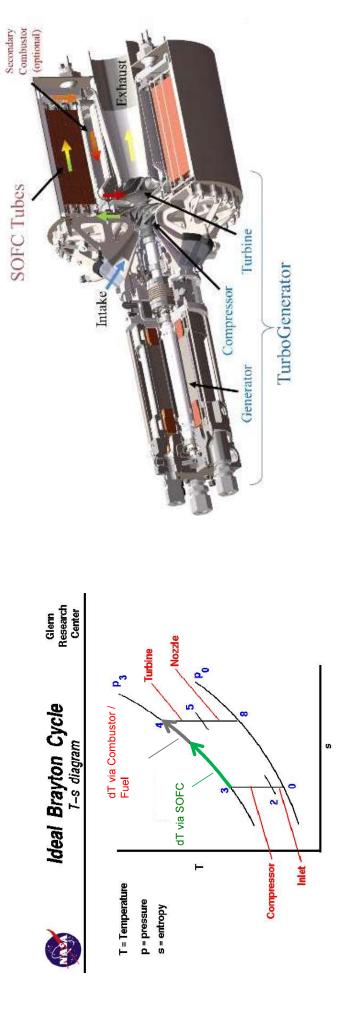
### REEACH Program- Metrics & Results

|             | <b>E</b>               |                                               |                                            |                             |
|-------------|------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------|
| Target      | > 3000 Wh/kg           | > 0.75 kW/kg                                  | < \$0.15/kWh                               | < \$1000/kW                 |
| Description | System specific energy | Powertrain system specific power > 0.75 kW/kg | Cost of fuel for delivered electric energy | Initial capital system cost |

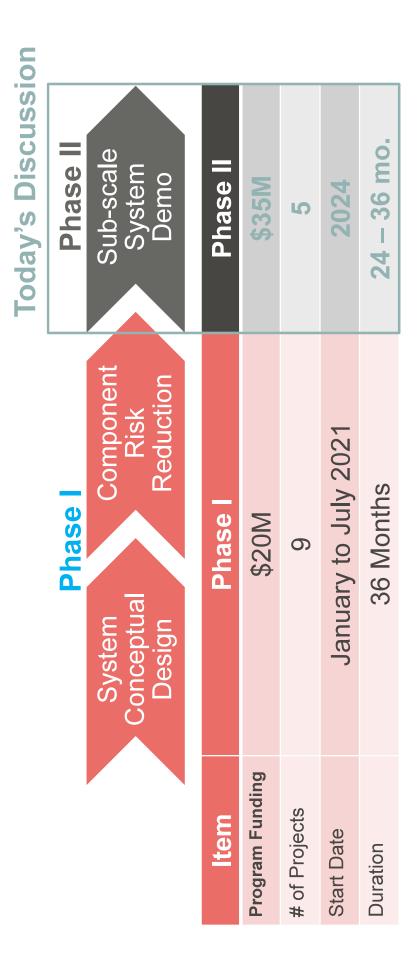

### Mission Profile for Modeling



#### **Executive Technical Summary:**

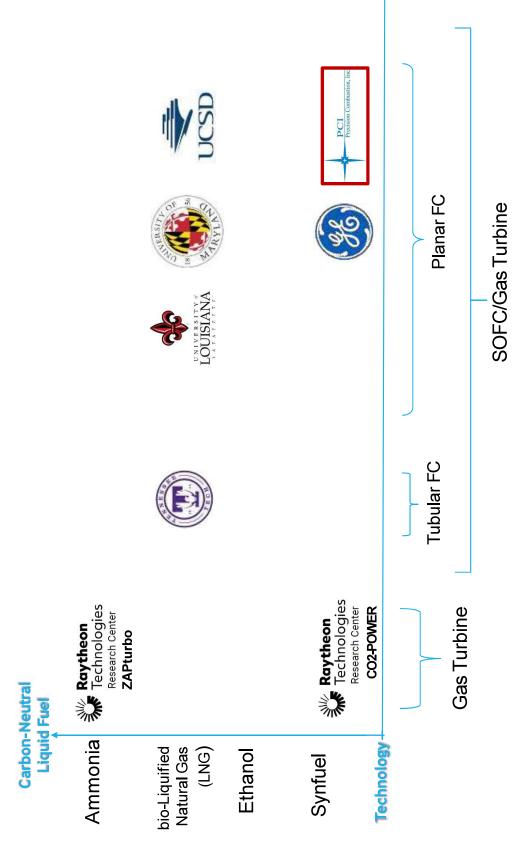

- MS-SOFC is a huge success; met all system targets
- SAF processing integrated successfully with MS-SOFC
- Bottom cycle heat recovery pending

### SOFC/Gas Turbine Hybrids




DARPA SHEPARD (Serial Hybrid Electric Propulsion AiRcraft Demonstrator)

# SOFC system integration for HEVP




### **REEACH Program Structure**





# REEACH Phase I Technology Map (01/2021)





# REEACH Phase II Technology Map (1/2024)



# Technical Risks & Potential Mitigations 11/2023

Risks to ultra-high efficiency at an acceptable specific power (weight)

| #    | <b>—</b>              | 7                   | က                 | 4          | 5                                | ဖ                        |
|------|-----------------------|---------------------|-------------------|------------|----------------------------------|--------------------------|
| Risk | Specific Power (W/kg) | Power Density (W/L) | Durability (SOFC) | Efficiency | Propulsion System<br>Integration | Energy Storage<br>System |

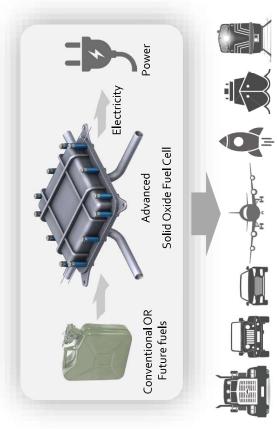
|                        |                     |                       |                       |              | Catastrophic > 0.9          |                         |
|------------------------|---------------------|-----------------------|-----------------------|--------------|-----------------------------|-------------------------|
|                        | <b>—</b>            | 2 2                   | 4                     |              | Major $0.5 \rightarrow 0.9$ | ds/yr)                  |
|                        | 3                   |                       |                       |              | Moderate<br>0.3 → 0.5       | Consequences (Quads/yr) |
|                        |                     |                       | 9                     |              | Minor<br>0.1 → 0.3          | Conse                   |
|                        |                     |                       |                       |              | Insignificant < 0.1         |                         |
| Almost Certain<br>>90% | Likely<br>50% → 90% | Moderate<br>30% → 50% | Unlikely<br>10% → 30% | Rare<br><10% |                             |                         |
|                        |                     | Likelihood            |                       |              |                             |                         |

# Technical Risks & Potential Mitigations 08/2025

# Risks to ultra-high efficiency at an acceptable specific power (weight)

| #    | <b>—</b>              | 7                   | က                 | 4          | 5                                | 9                        |
|------|-----------------------|---------------------|-------------------|------------|----------------------------------|--------------------------|
| Risk | Specific Power (W/kg) | Power Density (W/L) | Durability (SOFC) | Efficiency | Propulsion System<br>Integration | Energy Storage<br>System |

|                        |                     |                       |                       |              | U                           |                         |
|------------------------|---------------------|-----------------------|-----------------------|--------------|-----------------------------|-------------------------|
|                        |                     |                       |                       |              | Catastrophic > 0.9          |                         |
|                        |                     | 2                     |                       | 4            | Major<br>0.5 → 0.9          | ds/yr)                  |
|                        | 8                   |                       |                       |              | Moderate<br>0.3 → 0.5       | Consequences (Quads/yr) |
|                        |                     |                       |                       |              | Minor $0.1 \rightarrow 0.3$ | Conse                   |
|                        |                     |                       |                       | 9            | Insignificant < 0.1         |                         |
| Almost Certain<br>>90% | Likely<br>50% → 90% | Moderate<br>30% → 50% | Unlikely<br>10% → 30% | Rare<br><10% |                             |                         |
|                        |                     | Likelihood            | '                     |              |                             |                         |

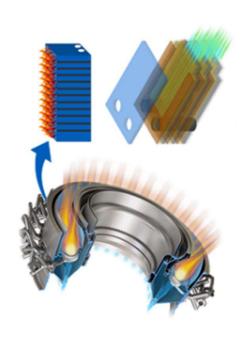

### **SOFC Performer Details**



**PI**: Subir Roychoudhury **PI**: Subir Roychoudhury **PI**'s email: sroychoudhury@precision-combustion.com

<u>F</u>uel-flexible, <u>Lightweight, Internally-reformed, G</u>as-turbine <u>H</u>ybridized SOFC for <u>Transportation</u> (*FLIGHT*)

| Full Scale Phase II Design Test Article | Solid Oxide Fuel Cell | Synfuel, kerosene, etc. | 1.05 0.5                         | TBD TBD                         | Application 10<br>Specific (SOFC) | >20%                           | TBD 100 VDC                   | <30 min <60 min | 10,000 [TBR]        | <1000                        |
|-----------------------------------------|-----------------------|-------------------------|----------------------------------|---------------------------------|-----------------------------------|--------------------------------|-------------------------------|-----------------|---------------------|------------------------------|
| Unit                                    |                       |                         | kW/kg                            | kW/l                            | kW                                | %                              | Λ                             | min.            | Hrs.                | $$/\mathrm{kW}_{\mathrm{e}}$ |
| Parameter                               | Technology Type       | Fuel                    | Powertrain specific power (peak) | Volumetric power density (peak) | Peak power rating                 | Fuel to electricity efficiency | Output voltage & type (AC/DC) | Start-up time   | Estimated ESPG MTBF | Predicted ESPG CAPEX         |

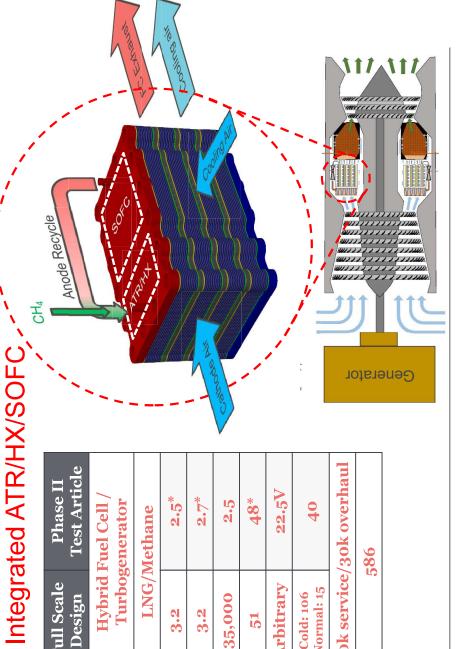



7

#### PI: Dr. John Hong (Senior Engineer, GE Aerospace) PI's email: John.Hong@GEAerospace.com

WITH GAS TURBINE (GT) GENSET, FOR FUEL-FLEXIBLE & HIGH-EFFICIENCY THRUST AND POWER GENERATION INNOVATIVELY INTEGRATING HIGH POWER DENSITY METAL-SUPPORTED SOLID OXIDE FUEL CELL (MS-SOFC)

| Technology Type S H2, C Fuel                  |                                                                        |                                  |
|-----------------------------------------------|------------------------------------------------------------------------|----------------------------------|
|                                               | SOFC-GT Hybrid                                                         | ybrid                            |
|                                               | H2, CH4, Kerosene-based<br>fuel (e.g., Jet-A), SAF (e.g.,<br>HEFA-SPK) | ene-based<br>, SAF (e.g.,<br>PK) |
| Powertrain specific power (peak)* $kW/kg$ > 1 | > 1                                                                    | ~1                               |
| Volumetric power density (peak)* $kW/l$ TBI   | TBD                                                                    | ~4                               |
| Peak power rating*   kW   > 100               | > 1000                                                                 | 2                                |
| Fuel to electricity efficiency* 80            | %08 <                                                                  | %02 <                            |
| Output voltage & type $(AC/DC)^*$ $V$ TBI     | TBD >                                                                  | > 70V DC                         |
| Start-up time* min.                           | Start with GT                                                          | LGT                              |
| Estimated ESPG MTBF* Gas                      | Gas Turbine Standard                                                   | tandard                          |
| Predicted ESPG CAPEX* \$/kW                   | ~940                                                                   |                                  |




<sup>\*</sup>Current engineering estimates or targets

### Hybrid SOFC-Turbogenerator for Aircraft

PI: Christopher Cadou Pl's email: cadou@umd.edu

|                                  |          |                         |                                      | )<br>-<br>)<br>)<br>? |
|----------------------------------|----------|-------------------------|--------------------------------------|-----------------------|
| Parameter                        | Unit     | Full Scale<br>Design    | Phase II<br>Test Article             | ``.                   |
| Technology Type                  |          | Hybrid Turbog           | Hybrid Fuel Cell /<br>Turbogenerator | `                     |
| Fuel                             |          | I/BNT                   | LNG/Methane                          |                       |
| Powertrain specific power (peak) | kW/kg    | 3.2                     | *0.0                                 |                       |
| Volumetric power density (peak)  | kW/1     | 3.2                     | *                                    | 1 300                 |
| Peak power rating                | kW       | 35,000                  | 2.5                                  | Bounes                |
| Fuel to electricity efficiency   | %        | 21                      | *8*                                  | p p                   |
| Output voltage & type (AC/DC)    | Λ        | Arbitrary               | 22.5V                                | ′                     |
| Start-up time                    | min.     | Cold: 106<br>Normal: 15 | 40                                   | :                     |
| Estimated ESPG MTBO              | Hrs.     | 10k service/            | 10k service/30k overhaul             | JC                    |
| Predicted ESPG CAPEX             | $$/kW_e$ | rů                      | 586                                  | otere                 |
|                                  |          |                         |                                      | eu:                   |



### High Performance Metal-Supported SOFC System for Range **Extension of Commercial Aviation**

PI: Xiao-Dong Zhou

Pl's email: xiao-dong.zhou@uconn.edu

# BREAKTHROUGH EFFICIENCY AND PERFORMANCE IN NATURAL GAS-POWERED METAL-SUPPORTED SOFCS

The University of Connecticut has achieved significant milestones in the development of metal-supported solid oxide fuel cells (MS-SOFCs), demonstrating unprecedented levels of efficiency and performance. Leveraging liquefied natural gas (LNG), propane, and other readily available fuels, these next-generation fuel cells offer enhanced reliability and are well-positioned to serve as a clean, high-efficiency power source for future applications in aviation, data centers, maritime transport, heavy-duty trucking, and beyond.

| Parameter                                | Unit          | Full Scale<br>Design | Phase II Test<br>Article             |
|------------------------------------------|---------------|----------------------|--------------------------------------|
| Technology Type                          |               | Next Gene            | Next Generation SOFC                 |
| Fuel                                     |               | Natural Gas, Prop    | Natural Gas, Propane, Jet Fuels & H2 |
| Powertrain specific power (peak)   kW/kg | kW/kg         | 1.5                  | 1.5                                  |
| Volumetric power density (peak)          | kW/l          | 3.5                  | 3.5                                  |
| Peak power rating                        | kW            | 2500                 | 5                                    |
| Fuel to electricity efficiency           | %             | 80                   | 80                                   |
| Output voltage & type (AC/DC)            | Λ             | 1,000                | 8V (DC) for 1 kW stack               |
| Start-up time                            | min.          | < 30                 | < 15                                 |
| <b>Estimated ESPG MTBF</b>               | Hrs.          | 12                   | 12,000                               |
| Predicted ESPG CAPEX                     | $$/{ m kW_e}$ | \$                   | \$125                                |



#### Thank You

**Program Director** James Seaba **ARPA-E**  James.seaba@hq.doe.gov